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Scaling properties of scale-free evolving networks: Continuous approach
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The scaling behavior of scale-free evolving networks, arising in areas such as communications, scientific
citations, collaborations, etc., is studied. We derive universal scaling relations describing properties of such
networks, and indicate the limits of their validity. We show that the main properties of scale-free evolving
networks may be described in the framework of a simple continuous approach. The simplest models of
networks, growing according to a mechanism of preferential attachment of links to nodes, are used. We
consider different forms of this preference, and demonstrate that the range of preferential attachments produc-
ing scale-free networks is wide. We also obtain scaling relations for networks with nonlinear, accelerating
growth, and describe the temporal evolution of the arising distributions. Size effects—the cutoffs of these
distributions—introduce restrictions for the observation of power-law dependences. Mainly we discuss the
so-called degree distribution, i.e., the distribution of the number of connections of nodes. A scaling form of the
distribution of links between pairs of individual nodes for a growing network of citations is also studied. We
describe the effects of differences between nodes. The ‘‘aging’’ of nodes changes the exponents of the
distributions. The appearance of a single node with high fitness changes the degree distribution of a network
dramatically. If its fitness exceeds some threshold value, this node captures a finite part of all links of the
network. We show that permanent random damage to a growing scale-free network—a permanent deletion of
some links—radically changes the values of the scaling exponents. Results of other kinds of permanent damage
are described.
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I. INTRODUCTION

One of the most impressive recent discoveries in the fi
of network evolution is the observation that a number
large growing networks are scale free, that is, the distri
tions of the number of connections of their nodes are o
power-law form@1–6#. Members of the class of scale-fre
networks are huge communications networks~the World
Wide Web and the Internet@7,8#!, networks of citations in
the scientific literature@9,10#, collaboration networks@11–
13#, some biological networks~nets of metabolic reaction
@14#!, etc. An incredible progression of science and inform
tion technology has produced networks, large enough~the
World Wide Web contains about 109 nodes! to obtain reli-
able data.

Nevertheless, the experimental data are certainly not
cellent. Indeed, the observation of such power laws is
easy. Arising distributions are very sensitive to size effe
Unfortunately, few really large growing networks are know
as of yet, and many of the obtained data for not so huge
are very preliminary. It is tempting to describe any decre
ing experimental curve on a log-log plot by a linear fi
Nearly all the observations are for the most easily mea
able quantity—degree distribution of nodes.~Following defi-
nitions of mathematicians and computer scientists, here
call the total number of connections of a node itsdegree
@15#. If the links are directed, the number of incoming lin
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of a node is called thein-degreeof it, and the number of
outgoing links theout-degree.! Information about others
characteristics is much poorer.

Therefore, only a few scale-free growing networks ha
been observed. Why are these observations so import
Why is the interest in these networks so great?~In one of the
last issues of Physical Review Letters, three papers, one
the other, were devoted to scale-free networks@16–18#.! Of
course, the reason for this is not only the power-law dep
dence of the distributions itself, but a variety of intriguin
properties of scale-free networks which explain their ex
tence in Nature. Degree distribution is a simple, but ve
important, characteristic of a network. In particular, it w
shown that networks with power-law degree distributions
extremely resilient against random breakdowns if theg ex-
ponent of their degree distribution does not exceed 3@16#.
This property is vitally important for communications an
biological networks. One also has to point out the followi
circumstance. A power-law dependence of the degree di
bution indicates a scale invariance of the characteristics
networks and their hierarchically organized structure. An
vestigation of the scaling properties of scale-free networ
and the connections between them, is a topic of the pre
paper.

We study the formulated problem by applying two diffe
ent approaches in arbitrary order. First, we obtain unive
scaling relations using general considerations. Second,
demonstrate features of the scaling behavior of networks
ing minimal models providing the effect being studied.
the moment, the only known mechanism producing sca
free networks is preferential attachment—new links are p
erentially attached to nodes with a large number of conn
©2001 The American Physical Society25-1
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tions~large degree! @5,19,20#. The probability that a new link
turns out to be attached to a node is a function of its deg
Related ideas were discussed long ago by Simon@21#. All
these models belong to a class of stochastic multiplica
processes@22#.

All the models used can be described by linear ma
equations@18# which are solvable exactly in several partic
lar cases. In this paper, we treat them using a trivial conti
ous approach@19,20,18# that, as we show, describes the ma
features of the networks and produces exact values of
exponents. A demonstration of the possibilities of the c
tinuous approach is one of the aims of our paper.

Here, we use several different models of evolving n
works ~with undirected and directed links!, but the skeleton
of all them is the same~see Fig. 1!. At each increment of
time, a new node is added. Therefore, the number of the
node,t, may be called ‘‘time.’’ Each node is labeled by th
time of its birth,s50,1,2, . . .<t. Together with a new node
several new links is appeared in the network. A part of th
links is distributed between nodes preferentially according
their degrees~we notate themk) or in-degrees ([q). ~Out-
degree distributions are discussed only in one place in
paper.! In general considerations,k andq will be equivalent
if no special notion will be made.

The following ‘‘one-node’’ characteristics may be intro
duced.p(k,s,t) is the probability that the nodes has a degree
k at time t. P(k,t) is the total degree distribution of a ne
work in time t. P(k)5P(k,t→`) is the stationary distribu-

FIG. 1. Scheme for the growth of the two standard netw
models considered in the present paper.~a! At each time step, a new
node withn incoming links is added. Source ends of all links a
placed anywhere. In addition,m links are distributed preferentially
among all nodes. This means that a target end of each of these
is attached to some node according to a rule of preference.~b! A
citation network model.n50. At each increment of time, a new
node withm outgoing links is added. Target ends of these links
distributed preferentially among old nodes.
05612
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tion, g is the corresponding scaling exponent, andP(k)

}k2g for largek. k̄(s,t) is the average degree of the nodes

at time t. b is its scaling exponent;k̄(s,t)}s2b. The corre-
sponding definitions for in-degree distributions are simila

In Sec. II we introduce the continuous approach. Cons
ering a simple example we explain the reasons for using
approach, and derive useful relations. In Sec. III, for linea
growing scale-free networks~the total number of links is
proportional to a total number of nodes with a tim
independent coefficient!, using general considerations, w
obtain scaling forms of involved quantities and universal
lations between scaling exponents. Section IV is devoted
study of different types of preferential attachment. Using
continuous approach, we describe~i! the simplest network in
which new links are attached without any preference~the
produces exponential distributions!, ~ii ! a linear type of pref-
erential attachment~that produces scale-free networks wi
2,g,`), ~iii ! a mixture of preferential and random linkin
~that also produces scale-free networks with 2,g,`), and
~iv! more general cases also producing scale-free netwo
In fact, in Secs. IV, V, and VI, different realizations of
linear preference functionG(s,t)k1A(s,t), according to
which new links are distributed among nodes, are studied
Sec. V, the ‘‘fitness’’ of a node,G(s,t), depends only on its
age,G(s,t)}(t2s)2d. This changes the scaling exponen
In Sec. VI, the fitness of nodes depends only on dates of t
birth, s. In this case, the network may exhibit an intriguin
phenomenon of ‘‘condensation’’ of a finite fraction of link
on the fittest node that was quite recently reported@23# ~also
see Ref.@24#!. Nevertheless, we demonstrate that the n
work remains scale free.

Note that, in most models considered here, new links m
also connect old nodes. Nevertheless, in Sec. VII, we stud
specific growing network in which new connections are p
sible only between the new and old nodes, that, in particu
may be used to describe networks of scientific citations.
this simple situation, using the continuous approach, it
possible to describe distributions of links between pairs
individual nodes.

Nonlinearly growing networks are considered in Se
VIII. For this more general case, we obtain scaling relatio
and describe nonstationary distributionsP(q,t) and their
cutoffs impeding observation of power-law dependences
finite-size networks.

In Sec. IX, we study influence ofpermanent damageon
the scaling characteristics of growing networks. We sh
that such a type of damage produces a much stronger e
on the network than the previously studied instant dam
@16,25–28#. The high quality of the continuous approach
discussed in Sec. X using already known exact results.

II. REASONS FOR THE CONTINUOUS APPROACH

We start from one of the simplest models of growin
networks with preferential attachment, proposed by Barab´si
and Albert @5#, which belongs to a class of more gener
models which were solved exactly afterwards@17,18#. At
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SCALING PROPERTIES OF SCALE-FREE EVOLVING . . . PHYSICAL REVIEW E63 056125
each increment of time, a node is added. It connects to on
the old nodes chosen with a probability proportional to
degree of this old node, i.e., to the total number of its c
nections. Using the notations introduced in Sec. I, it is p
sible to immediately write a master equation for the deg
distribution of individual nodes~see Ref.@18#!,

p~k,s,t11!5
k21

2t
p~k21,s,t !1S 12

k

2t D p~k,s,t !,

~1!

with, e.g.,t51,2,3, . . . ands50,1,2, . . . ,t. Hence, at time
t51, a pair of connected nodess50 and 1 is present. There
fore, the initial condition isp(k,s50,1,t51)5dk,1 , and
p(k,t,t)5dk,1 is the boundary condition. Equation~1! may
be rewritten in the form

2t@p~k,s,t11!2p~k,s,t !#5~k21!p~k21,s,t !

2kp~k,s,t !. ~2!

Passing to the continuous limit int andk, we obtain

2t
]p~k,s,t !

]t
1

]@kp~k,s,t !#

]k
50 ~3!

and

]@kp~k,s,t !#

] ln At
1

]@kp~k,s,t !#

] ln k
50. ~4!

The solution of Eq.~4! is kp(k,s,t)5d(ln k2ln At/s
1const). The boundary condition is fulfilled if the solution
of the following form:

p~k,s,t !5d~k2At/s!. ~5!

Therefore, we see that the transition to the continuous li
in the master equation leads to ad-function form of degree
distributions of individual nodes.

The main quantity of interest is the total degree distrib
tion of the entire network:

P~k,t !5
1

t11 (
s50

t

p~k,s,t !. ~6!

In the continuous approximation, the stationary degree
tribution is of the form

P~k!5P~k,t→`!5 lim
t→`

1

t E0

t

dsp~k,s,t !. ~7!

Inserting the obtained expression forp(k,s,t) @Eq. ~5!# into
Eq. ~7!, one obtains the continuous approximation result
this model:P(k)52/k3 @5,19#.

Another way to obtain this expression is to derive
equation for the total degree distribution,P(k,t). Applying
(s50

t to both sides of Eq.~1!, and passing to thet→` limit,
one obtains
05612
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2 @kP~k!2~k21!P~k21!#5dk,1 . ~8!

In the continuous limit, this equation is of the formP(k)
1(1/2)d@kP(k)#/dk50. Its solution isP(k)}k23.

Often, it is convenient to proceed in a slightly differe
way. Let us introduce the average degree of an individ
node:

k̄~s,t !5 (
k51

`

kp~k,s,t !5E
0

`

dkkp~k,s,t !. ~9!

Applying *0
`dkk to Eq. ~3!, and integrating its right hand

side by parts, we obtain

] k̄~s,t !

]t
5

k̄~s,t !

E
0

t

duk̄~u,t !

. ~10!

Here we used an obvious equality—the total number of lin
in this network, *0

t ds*0
`dkkp(k,s,t), is equal to 2t. A

boundary condition for Eq.~10! is k̄(t,t)51. It is possible to
use equations similar to Eq.~10!, and not to study each time
corresponding master equation.

The meaning of Eq.~10! is quite obvious—each new link
is distributed homogeneously among all nodes, taking
count of the particular form of preference. Initially, this a
proach has been called ‘‘mean field’’@5,19#, but later it was
shown that it is a continuous approximation@20,18#.

One should note that we pass to the continuous limit
both variablesk and t. The continuous limit fort is not dan-
gerous if we consider sufficiently large networks and do
study some peculiarities of distributions related to the p
ticular form of the initial conditions~for a very simple model
of a scale-free network, an exact solution was found for
values ofk and t @29#!. The continuous approximation ink
needs more care, so we discuss its quality throughout
paper.

III. SCALING RELATIONS FOR SCALE-FREE
NETWORKS

In the continuous approach, a knowledge of the aver
degree of nodes,k̄(s,t), lets us obtain the total degree distr
bution P(k,t). Here we do not restrict ourselves to any pa
ticular model, and our general results are also valid for
degreeq ~and out-degree! distributions. Nevertheless, in an
case,q̄(s,t) is the solution of an equation similar to Eq.~10!.

Indeed, one can write

P~k,t !5
1

t E0

t

dsd„k2 k̄~s,t !…

52
1

t
S ] k̄~s,t !

]s
D 21

@s5s~k,t !#, ~11!

wheres(k,t) is a solution of the equationk5 k̄(s,t). Now we
can easily connect involved quantities. Assuming thatP(k)
and k̄(s,t) exibit scaling behavior, that is,P(k)}k2g for
5-3
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large k and k̄(s,t)}s2b for 1!s!t, one obtainss}k21/b

and k2g}]s/]k}k2121/b. Therefore,g5111/b, and we
obtain the scaling relation

b~g21!51. ~12!

Let us show that Eq.~12! is universal. Here we can pro
ceed using general considerations. In the present section
study only linearly growing networks~the input flow of new
links does not depend on time! which produce stationary
degree distributions at long times. More complex cases
be considered in Sec. VIII A.

Hence letP(k) be stationary; it then follows from Eq.~7!
that p(k,s,t) has to be of the formp(k,s,t)5r(k,s/t). The
normalization condition is

E
0

`

dkp~k,s,t !51, ~13!

so *0
`dkr(k,x)51. From this equation, it follows tha

r(k,x)5g(x) f „kg(x)…, where g(x) and f (x) are arbitrary
functions. From the definition ofk̄(s,t) @Eq. ~9!#, using its
scaling behavior, we obtain*0

`dkkr(k,x)}x2b. Substituting
r(k,x) into this relation, one obtains thatg(x)}xb. Of
course, without loss of generality, one may setg(x)5xb, so
we obtain the following scaling form of the degree distrib
tion of individual nodes:

p~k,s,t !5~s/t !b f „k~s/t !b
…. ~14!

Finally, assuming a scaling behavior ofP(k), i.e.,
*0

`dxr(k,x)}k2g, and using Eq.~14!, we obtain g51
11/b, i.e., Eq.~12! is universal. Here we used the fast co
vergence ofr(k,x) at large x ~it follows from our exact
results@18#!. One should note that, during this derivation, w
did not use any approximations.

IV. TYPES OF PREFERENTIAL ATTACHMENT

A. Absence of preference

We need an example of a non-scale-free network for co
parison, so we start with the simplest growing network w
random attachment of new links introduced in Refs.@5,19#.
Again, as in Sec. II, at each increment of time, a new nod
added to the network. Now it connects with a randomly ch
sen~i.e., without any preference! old node. The growth be
gins from a configuration consisting of two connected no
at time t51. This model is even simpler than the we
known Erdös-Rényi model @30# ~also see Ref.@31#!, and its
exact solution is trivial. The master equation describing
evolution of the degree distribution of individual nodes c
be written as

p~k,s,t11!5
1

t11
p~k21,s,t !1S 12

1

t11D p~k,s,t !,

~15!
05612
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where p(k,s50,1,t51)5dk,1 and d(k,t,t>1)5dk,1 . Ap-
plying (s50

t to both sides of Eq.~15!, and using the defini-
tion of total degree distribution@Eq. ~6!#, we obtain

~ t11!P~k,t11!2tP~k,t !5P~k21,t !2P~k,t !1dk,1 .
~16!

The corresponding stationary equation,

2P~k!2P~k21!5dk,1 , ~17!

has a solution of an exponential form:P(k)522k. There-
fore, networks of such type are often called ‘‘exponential

From Eq.~15!, one may also find the degree distributio
of individual nodes,p(k,s,t), for larges andt and fixeds/t:

p~k,s,t !5
s

t

1

~k11!!
lnk11S t

sD . ~18!

One sees that this function decreases rapidly at large va
of degree,k.

Thus degree distributions of networks growing witho
preferential attachment differ strikingly from distributions
scale-free networks described in Sec. III. Note that the s
gularity of p(k,s,t) @Eq. ~18!# at s/t→0 is much weaker
than for scale-free networks.

B. Linear preference

Let us demonstrate the continuous approach in detail,
ing a more general model than in Sec. II, which produce
wide range ofg exponent values@18# @see Fig. 1~a!#. Let us
consider a network with directed links. Here we study t
distribution of the numbers ofincoming links of nodes~in-
degree, q).

At each time step a new node is added. It hasn incoming
links. These links go out from arbitrary nodes or even fro
some external source. Simultaneously,m extra links are dis-
tributed with preference. This means, again that they go
from nonspecified nodes or from an external source, but
a target end of each of them is attached to a node cho
preferentially: the probability to choose some particular no
is proportional to a function of its in-degree, we call this
preference function. In the simple model that we consider i
the present section, this probability is proportional toq1A,
whereA is a constant which we calladditional attractive-
ness. We shall see that its reasonable values areA.2n.

In the continuous approach, we may assume thatm andn
are not necessarily integer numbers, but any positive n
bers. We do not worry about the source ends of links beca
here we study only in-degree distributions.

Then the equation for the average in-degree is of the fo

]q̄~s,t !

]t
5m

q̄~s,t !1A

E
0

t

du@ q̄~u,t !1A#

, ~19!

with the initial condition,q̄(0,0)50, and the boundary one
q̄(t,t)5n. Applying *0

t ds to Eq. ~19!, we obtain
5-4
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]

]tE0

t

dsq̄~s,t !5E
0

t

ds
]

]t
q̄~s,t !1q̄~ t,t !, ~20!

so

E
0

t

dsq̄~s,t !5~m1n!t. ~21!

This relation is quite natural—the total in-degree of the n
work is equal to the total number of created links, and we
that Eq.~19! is consistent. Therefore, Eq.~19! takes the form

]q̄~s,t !

]t
5

m

m1n1A

q̄~s,t !1A

t
. ~22!

Its general solution is

q̄~s,t !1A5C~s!tm/(m1n1A), ~23!

whereC(s) is an arbitrary function ofs. Accounting for the
boundary conditionq̄(t,t)5n, one has

q̄~s,t !1A5~n1A!S s

t D
2m/(m1n1A)

. ~24!

Hence the scaling exponents are

b5
m

m1n1A
~25!

and

g521
n1A

m
. ~26!

One sees that, forn1A.0, the exponentg is in the range
2,g,`, while b belongs to the interval (0,1). We see th
n plays the same role asA.

If we setn50, and demand that all new links have to g
out from new nodes, we obtain a network of citations@see
Fig. 1~b!#. Note that, whenA5m and n50, we obtain the
particular case of the Baraba´si and Albert’s model@5# in
which each new link is connected with a new node. Inde
in this case, degree and in-degree of nodes are coupled
idly, k5q1m, and the obtained results are valid for th
degree distributions. If, in addition, we setm51, we obtain
the model considered in Sec. II.

C. Mixture of preferential and random attachment

Now we can consider a slightly more complex model. W
will demonstrate that scale-free networks may be obtai
even without a ‘‘pure’’ preferential attachment. We discu
the model introduced in Sec. III but with one new eleme
In addition, at each time step we allow,nr links to be dis-
tributed between nodes randomly, without any preferen
Again, we study in-degree distributions, so these links m
go out from anywhere, but their target ends are attache
randomly chosen nodes. Then
05612
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]q̄~s,t !

]t
5

nr

t
1m

q̄~s,t !1A

E
0

t

du@ q̄~u,t !1A#

. ~27!

Again, q̄(0,0)50 and q̄(t,t)5n. In this case,*0
t dsq̄(s,t)

5(nr1m1n)t, so Eq.~27! takes the form

]q̄~s,t !

]t
5

m

nr1m1n1A

3
1

t F q̄~s,t !1A1
nr

m
~nr1m1n1A!G . ~28!

Its solution, with account for the boundary condition, is

q̄~s,t !1A1
nr

m
~nr1m1n1A!

5
nr1m

m
~n1nr1A!S s

t D
2m/(nr1m1n1A)

. ~29!

Herem, n, andnr are positive numbers, andnr1n1A.0.
Therefore, we obtain a scale-free network, with the ex

nents

b5
m

m1nr1n1A
,

~30!

g521
nr1n1A

m
.

Thus an additional fraction of randomly distributed link
does not delete a power-law dependence of the distributi
but only increasesg.

In two computer-science papers@3,32#, a similar model of
a network with directed links was considered. At each tim
step, a new node is added to the net. It has one outgoing
The other end of this link is attached to one of the old nod
by the following rule.~i! With probabilityp, it is attached to
a random node.~ii ! With probability 12p, it finds a random
node and attaches itself to its sole target neighbor node~In
this particular case, this is the same as choosing a ran
link and connecting a new node with its target end.!

One can see that this model corresponds to the partic
case,n50, nr5p, m512p, andA50 of the network that
we consider in the present section. From Eq.~30!, we obtain
g521p/(12p)5111/(12p). Note that, in Refs.@3,32#,
the wrong result was presented. The necessary additi
unit is absent there. Indeed, if one of the factors~random
attachment! producesg5` and another one~preferential at-
tachment! produces 2,g,`, then their interplay canno
produceg,2.

It is worth emphasizing here the close connection of
models that we consider with the well-known Simon’s mod
@21#, discussed in relation with networks in Ref.@33#. In
Simon’s model, if one uses the terminology of growing n
works with directed links, at each time step a new link a
pears. Since here we discuss only in-degree, it is again
5-5
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important from where it goes out. With some fixed probab
ity, a new node is created, and the target end of the lin
attached to it. With a complementary probability, the tar
end of the link is attached to the target end of a random
chosen old node. Then only one point in Simon’s mo
differs from the models that we consider in the present pa
at each increment of time, a link is added, but not the nod
in our case. Of course, this does not influence the results
large networks and the scaling exponents.

D. WWW exponents

The previous result for theg exponent,@Eq. ~30!# allows
us to obtain the crudest estimates for the exponents of
World Wide Web~WWW! @33,34# which are measured with
sufficient precision for comparison. Let us apply the mo
of Sec. IV C to the growth of the World Wide Web. Th
means that we have to assume that each time a new no
the Web appears, on average, the same number of new
arises between its nodes. We neglect many very impor
factors, including the elimination of some nodes and lin
during the growth, etc.

We do not know the values of the quantities on the l
hand side of Eq.~30!. The constantA may takeany values
between2(nr1n) and infinity; the number of randomly dis
tributed links,nr , in principle, may be not small~there exist
many individuals making their references practically at ra
dom!, andn is not fixed. From the experimental data@4#, we
know more or less the sum,m1n1nr;10@1 ~between 7
and 10, more precisely!, and that is all.

The only thing we can do is to fix the scales of the qua
tities. The natural characteristic values fornr1n1A in Eq.
~30! are ~a! 0, ~b! 1, ~c! m@1, and~d! infinity. In the first
case, each node has a zero initial attractiveness, and all
links are directed to the oldest node,g→2. In the last case
there is no preferential attachment, and the network is
scale free,g→`. Let us consider the truly important cas
~b! and ~c!.

~b! How do pages appear on the Web? Suppose you w
to create your own personal home page. Of course, first
prepare it, put in references, etc. But that is only the fi
step. You have to make it accessible on the Web, to lau
it. You come to your system administrator. He places a
erence to it~usually one reference! in the home page of you
institution, and that is more or less all—your page is on
World Wide Web. There is another way of appearing of n
documents on the Web. Imagine you already have your
sonal home page and want to launch a new document.
process is even simpler than the one described above.
simply insert at least one reference to the document into y
page, and that is enough for the document to be included
the World Wide Web. If the process of the appearance
each document on the Web is as simple as the creatio
your page—only one reference to the new documentn
51)—and if one forgets about the termsnr and A in Eq.
~30!, then, for theg in exponent of the distribution of the
incoming links~in-degree distribution!, we immediately ob-
tain the estimationg in22;1/m;1021. This estimation co-
incides with the experimental valueg in2250.1 @4#. ~Here
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we have introduced the notationg in , because in the presen
section we discuss different distributions.! Therefore, the es-
timation seems to be good. Nevertheless, we should a
repeat that this estimation follows only from the fixation
scales of the involved quantities. We emphasize that th
are no any general reasons to set, e.g.,A50. Many real
processes are not included in this estimation. The aging
nodes changesg ~see Sec. V and Ref.@20#!. The permanent
disappearance of links~see Ref.@35# and Sec. IX B! ~the
half-life of a page on the Web is of the order of half a yea!
also changesg. The ratio between the total number of link
and the number of nodes in the Web is not constant@4#, it
increases with time, and the growth of the Web is nonline
This factor also changes the value ofg; in the future it may
become even lower than 2; see Ref.@36# and Sec. VIII.

~c! Above we discussed the distribution of incomin
links. Equation~30! may be also applied for the distributio
of links which come out from documents of the Web, sin
the model of Sec. III may be reformulated for outgoing lin
of nodes. In this case all the quantities in Eq.~30! take other
values which are again unknown. Nevertheless, one m
think that the number of links distributed without any pre
erence,nr , is not small. Indeed, even beginners proceed
linking their pages. Also, usually there are several ref
ences,n, in each new document. Hencen1nr;m—we have
no another available scale—andgout22;m/m;1. We
again can compare this estimation with the experimen
value:gout2250.7 @4#.

E. Generalized form of preference

What other forms of preference produce scale-free n
works? Let us list the main possibilities. In the present s
tion and in Secs. V and VI, we consider only a linear form
a preference function. Nonlinear preference functions
discussed in Sec. X.

A reasonable~linear! form of the probability for a new
link attached to a nodes at timet is ps,t5Gs,tks,t1As,t . The
coefficientGs,t may be called thefitnessof a node@23,37#,
and As,t is additional attractiveness. One can consider the
following particular cases.

~i! G5const, A5A(s). In this case, the additional at
tractivenessA(s) may be treated as ascribed to individu
nodes. A possible generalization is to make it a rand
quantity. One can check that the answers do not cha
crucially—one only has to substitute the average valueĀ,
instead ofA, into the previous expressions for scaling exp
nents. Note thatn andm may also be random, and substitute
with n̄ andm̄ in the expressions for the exponents.

There is a more interesting possibility: constructing a
rect generalization of the network considered in Sec. IV
For this, we may ascribe the additional attractiveness no
nodes but to new links and again make this a random qu
tity. Therefore, new links play the role of fans with differe
degrees of passion for their idols~nodes!. This is case~ii !,
G5const, A5A(t), whereA(t) is random.

Let a distribution function ofA be P(A). Then our main
equation looks like
5-6
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]q̄~s,t !

]t
5m̄E dAP~A!

q̄~s,t !1A

E
0

t

du@ q̄~u,t !1A#

. ~31!

The initial and boundary conditions areq̄(0,0)50 and
q̄(t,t)5n̄. Hence*0

t dsq̄(s,t)5(n̄1m̄)t. Therefore,

]q̄~s,t !

]t
5

m̄

t F q̄~s,t !E dAP~A!

n̄1m̄1A
1E dAAP~A!

n̄1m̄1A
G .

~32!

Thus we again obtain a scale-free network with the ex
nents

b5m̄E dAP~A!

n̄1m̄1A
~33!

and

g511F E dAP~A!

11~ n̄1A!/m̄
G21

. ~34!

These expressions generalize the corresponding resul
Secs. IV B and IV C. One can see that the values of
g exponent are again between 2 and`, b is between 0 and
1.

~iii ! A5const. The caseG(s,t)}(s2t)2a, the aging of
nodes, is considered in Sec. V, it produces 2,g,`. Differ-
ent versions of thes-dependent fitness,G(s,t)5G(s), are
studied in Sec. VI. The case of the power-law depende
G(s)}s2D is considered in Sec. VI A. Three different type
of behavior are possible:D,0, an exponential network;D
50, a scale-free network; andD.0, in which the oldest
node receives a finite part of the total degree of a netwo

One can consider a network in which several nodes
‘‘stronger’’ than others. We investigate effects arising in th
situation in Sec. VI B. A homogeneous mixture of nod
with two different values of fitness is studied in Sec. VI C

The case of fluctuatingG(s) was considered by Biancon
and Baraba´si @37#. When the distribution ofG is homoge-
neous, i.e.,G is homogeneously distributed between tw
fixed values, the distribution has a logarithmic factorP(q)
}q2g/ ln q, whereg.2. For some special forms of the dis
tribution of G, strong cooperative effects were found recen
@23#.

~iv! A5const, G5G(t). This case is reduced to cas
~ii !.

V. EFFECT OF AGING OF NODES

How does the structure of the network change if one
troduces an aging of the sites@20#, i.e., if the probability of
the connection of the new node with some old one is prop
tional not only to the degree of the old node but also to
power of its age (t2a, for example!? Here we introduce the
aging exponenta. Such aging is natural for networks o
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scientific citations in which the old papers usually have lo
attractiveness.

The simplest analytical expressions may be obtained
the model of Sec. II: links are undirected, and every n
node is connected by a single link with some old node wh
is chosen according to the same rule of preference as in
II. Figure 2 demonstrates that the structure of the netw
depends crucially on the value of the aging exponent. W
a is large enough~larger than 1), the network looks like
linear structure. For low negative values ofa, i.e., for large
2a ~in this case, the attractiveness of the documents
creases with the growth of their age! many links are attached
to the oldest nodes.

The resulting equation for such a network is of the for

] k̄~s,t !

]t
5

k̄~s,t !~ t2s!2a

E
0

t

duk̄~u,t !~ t2u!2a

, k̄~ t,t !51. ~35!

Then*0
t dsk̄(s,t)52t.

We search for the solution of Eq.~35! in a scaling form:

k̄~s,t ![k~s/t !, s/t[j. ~36!

Then Eq.~35! becomes

FIG. 2. Change of the structure of the network with an aging
nodes with an increase of the aging exponenta. The aging is pro-
portional tot2a, wheret is the age of the site. The network grow
clockwise starting from the site below on the left. Each time, o
new site with one link is added.
5-7
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2j~12j!a
d ln k~j!

dj
5F E

0

1

dzk~z!~12z!2aG21

[b,

~37!
k~1!51,

where b is a constant which is as yet unknown. One c
understand that this is just the exponentb of the average
degree of individual nodes, since, in the scaling regionj
!1, Eq. ~37! provides the power-law dependencek(j)
}j2b. We also obtain the relation*0

1dzk(z)52. Our aim is
to find b. For this, we have to find a solution of Eq.~37!
containing this unknown parameterb, and substitute it into
its definition, the left part of Eq.~37!, or into the relation for
the total number of links.

The solution of Eq.~37! is

k~j!5B expF2bE dj

j~12j!aG , ~38!

whereB is a constant. The indefinite integral in Eq.~38! may
be taken as

E dj

j~12j!a
5 ln j1(

j 50

`
1

j ! ~ j 11!2
a

3~a11! . . . ~a1 j !j j 11

5 ln j1a3F2~1,1,11a;2,2;j!, ~39!

where 3F2() is the hypergeometric function. Recalling th
boundary conditionk(1)51, we find the constantB. Thus
the solution is

k~j!5e2b[C1c(12a)]j2b

3exp@2baj3F2~1,1,11a;2,2;j!#, ~40!

whereC50.5772 . . . is Euler’s constant, andc() is the c
function. The transcendental equation forb may be written if
one substitutes Eq.~40! into the right hand side of Eq.~37!:

b215e2b[C1c(12a)]E
0

1 dz

zb~12z!a

3exp@2baz3F2~1,1,11a;2,2;z!#. ~41!

@An equivalent equation one may obtain substituting the
lution, Eq. ~40!, into the relation*0

1dzk(z)52#. The g ex-
ponent may be obtained using the universal relation,
~12!.

The solution of Eq.~41! exists in the range2`,a,1.
One may also find simple expressions forb(a) andg(a) at
a→0:

b>
1

2
2~12 ln 2!a, g>314~12 ln 2!a, ~42!

where the numerical values of the coefficients are 12 ln 2
50.3069 . . . and 4(12 ln 2)51.2274 . . . . Weused the rela-
05612
n
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q.

tion 3F2(1,1,1;2,2;z)5Li 2(z)/z[((k51
` zk/k2)/z while de-

riving Eq. ~42!. HereLi 2() is the polylogarithm function of
order 2.

In the limit of a→1, using the relation
3F2(1,1,2;2,2;z)52 ln(12z)/z, we find

b>c1~12a!, g>
1

c1

1

12a
. ~43!

Herec150.8065 . . . andc1
2151.2400 . . . : theconstantc1

is the solution of the equation 111/c15exp(c1). The depen-
dencesb(a) and g(a) are shown in Figs. 3 and 4. Fo
comparison, data of simulations@20# are also plotted. One
sees thatb→1 andg→2 in the limit a→2`. Therefore,
the whole range of the variation ofb is (0,1), and that ofg
is (2,̀ ). One should note that, in this section, we studied
case ofm51 but the results, the scaling exponents, are,
course, independent ofm.

FIG. 3. b exponent of the mean degree vs the aging exponena.
Points are obtained from simulations@20#. The line is the solution
of Eq. ~41!. The inset shows the analytical solution in the rang
25,a,1. Note thatb→1 if a→2`.

FIG. 4. g exponent of the degree distribution vs the aging e
ponenta. The points show the results of simulations@20#. The line
is the solution of Eq.~41!, taking account of Eq.~12!. The inset
depicts an analytical solution in the range25,a,1.
5-8
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VI. ‘‘CONDENSATION’’ OF LINKS ON THE ‘‘FITTEST’’
NODES

Now we can consider effects of thes-dependent fitness o
nodes,G5G(s). We proceed with our tactics, and demo
strate these effects using minimal models.

It is worth starting this section from the following notion
All networks that we study in the present paper have a g
eral feature—eachof their nodes has a chance to obtain
new link. Only one circumstance prevents their enrichme
seizure of this link by another node. In such kinetics of t
distribution of links, there is no any finite radius of ‘‘inter
action’’ and there are no principal obstacles to the captur
a great fraction of links by some node.

A. Varying fitness of nodes

Let us start from the case of a power-law dependenc
the fitness,G(s)}s2D. At first sight, this problem seems b
very close to the one considered in Sec. V. Nevertheles
repetition of the calculations of Sec. V for the present mo
leads immediately to the following expression for the degr

k~j!5B exp@bj2D#, ~44!

whereB is a constant, andj5s/t, k̄5k(j) @compare with
Eq. ~38!#. This expression provides a value ofk̄(s,t) differ-
ent from the average degree considered in Sec. V.

If D,0, i.e., new nodes are ‘‘stronger’’ than old ones, w
obtain k(s/t→0)→0, and the network isexponential. If D
50, we obtain an ordinary scale-free network. IfD.0, then
k(s/t) is an extremely divergent function atj50. This pe-
culiarity cannot be integrated. It indicates that the seve
oldest nodes capture a finite part of the nodes. In this c
our theory is not directly applicable, since one cannot solv
self-consistency equation and findb. We do not consider this
situation in detail here. Such a behavior may be compa
with the one found forG5G(k)5ky21, y.1, where most
of the links turn out to be attached to the oldest node@17,38#.
The ‘‘phase diagram’’ of the model is shown in Fig. 5.

B. Local strong nodes

The fluctuating fitness of nodesG(s) was introduced in
the recent papers a Bianconi and Baraba´si @23,37#. In anal-

FIG. 5. Phases of the network with varying strengths of

nodes,G(s)5s2D8. Scale-free networks are realized only atD8
50.
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ogy with Bose-Einstein condensation, they indicated a n
phenomenon arising in this situation. A finite fraction
links may ‘‘condense’’ on a single node with the highe
fitness when the distribution of the fitness of nodes ha
suitable form. In Ref.@23#, nodes were interpreted as ener
levels which may be filled by arbitrary numbers of link
Bose particles, and the process was called Bose-Eistein
densation. However, we demonstrate the essence of the
lution of such systems using the most simple~although quite
general! example, without implementation of any analogy

Let us start from the model with directed links introduc
in Sec. IV B. To simplify the formulas, we assume thatA
50 ~one may see that this does not reduce the extent of
generality of the model, which produces scaling exponent
a wide ranges of values 2,g,` and 0,b,1). Let us
recall the model@see Fig. 1~a!#. At each increment of time, a
new node withn links attached to it is added to the networ
Thesen links are directed to the new node. Simultaneous
m extra links are distributed preferentially among nodes. T
rule of preference is the same as in Sec. IV B, i.e., the pr
ability that a link is directed to a nodes is proportional to its
in-degree,qs , but with one exception—one nodes̃ is ‘‘stron-
ger’’ than others, i.e., the probability that this node attract
preferentially distributed link is higher. This has an add
tional weight factor, fitnessg.1, and is proportional togqs̃ .
This means thatGs511(g21)ds,s̃ .

Let us study the behavior of the network att@ s̃. The
equations for the average in-degree are

]q̄s̃~ t !

]t
5m

gq̄s̃~ t !

~g21!q̄s̃~ t !1E
0

t

dsq̄~s,t !

, q̄s̃~ t5 s̃!5qi ,

~45!

]q̄~s,t !

]t
5m

q̄~s,t !

~g21!q̄s̃~ t !1E
0

t

dsq̄~s,t !

, q̄~ t,t !5n.

In the second line of Eq.~45!, s5” s̃. Applying (s to Eq.~45!

one obtains*0
t dsq̄(s,t)5(m1n)t1O(1).

Two different situations are possible. In the first on
qs̃(t) grows more slowly thant, and, at long times, the de
nominators are equal (m1n)t. Then the second line of Eq
~45! is similar to Eq.~22!, and we again obtain the exponen
b5m/(m1n)[b0 and g521n/m[g05111/b0, where
0,b0,1, 2,g0,`. It is convenient to write equation
using not the parametersm and n, but g0 or b0, i.e., the
exponents of the network in which all nodes have equal
ness:g51. The first line of Eq.~45!, in this case, looks like

]q̄s̃~ t !

]t
5

gm

m1n

gq̄s̃~ t !

t
. ~46!

Hence, at long times,q̄s̃(t)5const(qi)t
gm/(m1n), and we see

that the in-degree of the strong node grows slower that
only for

e

5-9
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g,gc[11
n

m
5g0215b0

21.1, ~47!

so the natural threshold arises.
In the other situation,g.gc , at long times, we have th

only possibility:qs̃(t)5dt, whered is some constant, since
faster growth ofqs̃(t) is impossible. Obviously,d,m1n.
This means that, forg.gc , a finite fraction of all preferen-
tially distributed links is captured by the strong node, a
‘‘condensed’’ on it ~in Ref. @23#, this situation was called
Bose-Einstein condensation!. We see that a single stron
node may produce a macroscopic effect. In this case,
~45! takes the forms

]q̄s̃~ t !

]t
5

gm

~g21!d1m1n

q̄s̃~ t !

t
,

~48!
]q̄~s,t !

]t
5

m

~g21!d1m1n

q̄~s,t !

t
,

where in the second of Eqs.~48!, s5” s̃. Note that the coeffi-
cient in the first equation is always larger than the seco
sincegc.1. From the first of Eqs.~48!, we obtain the con-
dition

gm

~g21!d1m1n
51. ~49!

Therefore, above the threshold (g.gc) the following frac-
tion of all links of the network is captured by the stronge
node:

d

m1n
5

d

m

m

m1n
5

1

gc

g2gc

g21
. ~50!

We have to emphasize thatd is independent of the initia
conditions. ~Recall that we consider the long time limit!
This condensation of links leads to a change of expone
Using Eq.~49!, we immediately obtain the following expres
sions for them:

b5
1

g
,b0 , g511g.g0 . ~51!

The fraction of all links captured by the strongest nod
and theb andg exponents vsg, are shown in Fig. 6. Note
that the growth ofg increases the value of theg exponent. If
the world were to be captured by Bill Gates or some czar,
distribution of wealth would become more fair. One shou
note that the strong node does not take links away from o
nodes, but onlyinterceptsthem. The closerg0 is to 2, the
smaller the value ofg necessary to exceed the thresho
Above the threshold, values of the exponents are determ
only by g. Nevertheless, the expression ford/(m1n) con-
tainsg0 or b0.

For g.gc , in the link condensation regime, the stronge
node determines the evolution of the network. With incre
ing time, a gap grows between the in-degree of the stron
node and the maximal in-degree of all others; see Fig. 7
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small peak at the end of the continuous part of the distri
tion is a trace of initial conditions; see Sec. VIII B. Note th
the network remains scale free even above the threshold,
for g.gc , althoughg grows with growingg.

The same result may be obtained for several nodess̃i with
different values of fitnessgi , wheres̃i!t. Heregi.1 ~val-
uesgi,1 do not produce any visible effect!. In this case, the
strongest node,s̃j , again captures a finite part of the links
gj.gc . Note that the time required by the strongest node
attract a finite fraction of links may be very long if it is onl
a bit stronger than the previous strongest one. Note also

FIG. 6. ‘‘Condensation’’ of links. Shown are the fraction of a
links, d/(m1n), captured by a single strong node at long times, a
the scaling exponentsb andg vs the relative fitnessg of the strong
node. The condensation occurs above the threshold valuegc

51/b05g021.1. Hereb0 and g0 are the corresponding expo
nents for a network without a strong node.d/(m1n)@g→`#→b0

andb@g→`#→0.

FIG. 7. Schematic plot of the degree distribution of the netwo
with one node, the fitness of which exceeds the threshold value.
point is due to links ‘‘condensed’’ on the strong node. A hump
the cutoff of the continuous part of the distribution is a trace of
initial conditions~see Sec. VIII B and Ref.@29#!.
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death of the strongest node produces a dramatic effect—
some time, the distribution becomes less ‘‘fair.’’ Deletion
a single strong node may also destroy the entire network

If N strong nodes of equal fitnessg are present, one ca
find again that the critical exponents are described by
~51!. The part of the links captured by all these strong no
together is given by Eq.~50!.

Here we study the limit of large networks. One can d
scribe relaxation to this state. Let us consider the relaxa
of the fraction of all links captured by a single strong nod
q̄s̃(t)/@(m1n)t#, to the final stationary valued/(m1n) @Eq.
~50!#. At long times, from the first of Eqs.~45!, after linear-
ization near the stationary value@Eq. ~50!#, we obtain the
result

q̄s̃~ t !2dt

~m1n!t
}t2(g2gc)/g, ~52!

which is valid for anyg.gc . Therefore, in the regime o
link condensation, the fraction of all links captured by t
strong node relaxes to the final value by a power law. T
exponent of this, (g2gc)/g, approaches zero at the point
condensation,g5gc . This behavior evokes association
with critical relaxation.

C. Mixture of nodes with different fitness

How can we ‘‘smear’’ the threshold described in Sec.
Again, let us use the simplest model, in which nodes h
two values of fitness, 1 andg.1; however, now the node
with different values of fitness are distributed homog
neously. The probability that a node has a fitness equal
is 12p; with probability p, a node has a fitnessg. All other
conditions are the same as in Sec. VI B. We can introd
average in-degreesq̄1(t) and q̄g(t) for these components
Then the evolution of the average in-degrees is determ
by the equations

]q̄g~s,t !

]t
5m

gq̄g~s,t !

~12p!E
0

t

dsq̄1~s,t !1gpE
0

t

dsq̄g~s,t !

,

~53!

]q̄1~s,t !

]t
5m

q̄1~s,t !

~12p!E
0

t

dsq̄1~s,t !1gpE
0

t

dsq̄g~s,t !

,

where q̄g(t,t)5q̄1(t,t)5n @compare with Eqs.~45!#. As
usual, we obtain

~12p!E
0

t

dsq̄1~s,t !1pE
0

t

dsq̄g~s,t !5~m1n!t. ~54!

If one introduces the natural notationm/@(1
2p)*0

t dsq̄1(s,t)1gp*0
t dsq̄g(s,t)#[b1, Eqs. ~53! take the

following forms:
05612
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]q̄g~s,t !

]t
5b1g

q̄g~s,t !

t
,

~55!
]q̄1~s,t !

]t
5b1

q̄1~s,t !

t
.

Inserting the solutions of these equations,q̄g(s,t)
5n(s/t)2b1g and q̄1(s,t)5n(s/t)2b1, into Eq.~54!, we ob-
tain the equation forb1:

12p

12b1
1

p

12b1g
5

1

12b0
. ~56!

The solution of Eq.~56! is of the form

b15
1

2g
$@12p1pb0#1@p1~12p!b0#g

2A$@12p1pb0#1@p1~12p!b0#g%224b0g%

~57!

~we choose this root of the square equation to obtain
proper equality,b1(g51)5b0).

The fraction of links captured by the strong componen
given by the relation

d

m1n
5

p

12b1g

n

m1n
5p

12b0

12b1g
~58!

whereb1 is taken from Eq.~57!. Exponentsb1 and g151
11/b1 describe the distribution of nodes of the weak co
ponent containing the 12d/(m1n) part of the nodes. Expo
nentsbg5b1g andgg5111/bg describe the distribution o
nodes of the strong component. The dependences of t
characteristics ong are shown schematically in Fig. 8. On
may see that, forp→0, these curves tend toward the depe
dences obtained for a single strong node in Sec. V. Fop
.0, a long tail of the distribution with the exponentgg
,g0,g1 is determined by the strong nodes. Forp→0, it is
transformed into thed function obtained in Sec. V. A par
ticular value ofp determines the smearing of the thresho
discussed in Sec. VI B.

Thus, forp5” 0, the link condensation phenomenon is a
sent. It exists only if there are a few nodes with maxim
strength. In the case of continuous distributionsP(g), this
happens only for special forms ofP(g) @23#.

VII. DISTRIBUTIONS OF LINKS BETWEEN PAIRS
OF NODES

Let us discuss another characteristic describing the st
ture of network and the distribution of links between pairs
nodes—an average matrix element of an adjacency ma
~An elementbi j of an adjacency matrix is equal to 1 if ther
is a link connecting sitesi andj, and is equals to 0 is the link
is absent.!

There is a very important particular case when this ch
acteristic may be easily calculated. In this case, new li
5-11
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appear only between the new and old nodes, but never
tween old nodes of the network@see Fig. 1~b!#. For instance,
networks of scientific citations belong to the class of su
networks.

Here we study the simplest model of Sec. IV B withn
50. For brevity, in this section we consider networks w
undirected links. Then into the relations of Sec. IV B, we c
substituteq̄(s,t)5 k̄(s,t)2m. That is, at each time step, w
add a new node withm attached undirected links. Other en
of these links are distributed preferentially between
nodes.

Let us introduce an average number of links betwe
nodess ands8 (s8.s) at a timet, b̄(s,s8,t). For the network
that we consider,

k̄~s,t !5E
0

s

dub̄~u,s,t !1E
s

t

dub̄~s,u,t !

5m1E
s

t

dub̄~s,u,t !. ~59!

No new links between old nodes arise, so one can see t

b̄~s,t,t8>t !5b̄~s,t,t !,
] k̄~s,t !

]t
5b̄~s,t,t8>t !. ~60!

FIG. 8. Fraction of all links,d/(m1n), captured by the compo
nent of the network consisting of ‘‘strong’’ nodes at long times, a
the scaling exponentsb and g vs the relative fitnessg of the
‘‘strong’’ nodes. We introduce two sets of exponents for two co
ponents of the network:b1 andg1 for the component consisting o
nodes with unit fitness@contains (12p)t nodes#, andbg andgg for
the component consisting of nodes with a fitnessg ~containspt
nodes!. Thin lines depict the dependences at fixed values ofp. Ar-
rows show how these curves change whenp decreases from 1 to 0
At p→0, we obtain the dependences shown in Fig. 8. Atp→1,
d/(m1n)→1, bg(g,gc)→b0g, bg(g.gc)→1, b1→b0 /g, g1

→11g/b0 , gg(g,gc)→111/(b0g), andgg(g.gc)→g0.
05612
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Using a scaling representation,k̄(s,t)5k(s/t) and
b̄(s,s8,t)5t21B(s/t,s8/t), one can write

b̄~s,t,t8>t !5
1

t8
BS s

t8
,

t

t8
D 5

1

t
BS s

t
,
t

t
51D ~61!

and

]

]~s/t !
kS s

t D5
]

]~s/t !
kS s

t8

t8

t D . ~62!

Therefore, we obtain relations forB(j,j8) andk(j),

B~j,j8!5
1

j8
BS j

j8
,1D ,

B~j,j8!52
j

j82
k8S j

j8
D , ~63!

B~j,1!52jk8~j!

wherek8(x)[dk(x)/dx.
In our particular problem,k(1)5m; thus, from Eq.~59!,

it follows that

k~j!5m1E
j

1

dj9B~j,j9!5m1E
j

1dz

z
B~z,1!. ~64!

From relations of Sec. IV B, we obtain

k~j!5mF22
1

b
1S 1

b
21D j2bG . ~65!

Then, from Eq.~63!, we obtain the result,

B~j,j8!5m~12b!j2bj8b21. ~66!

This characteristic was obtained explicitly for a model w
b51/2 @29#. From this exact solution, the particular caseb
51/2 of Eq.~66! follows immediately. Note thatB(j,j8) is
not proportional to the productk(j)k(j8).

It is interesting to compare these expressions with co
sponding results for exponential networks~we shall discuss
the applicability of the continuous approach to non-scale-f
networks in Sec. X C!. Settingm5nr and n5A50 in the
equations of Sec. IV C, one obtains

k~j!5m~12 ln j!, B~j,j8!5
m

j8
. ~67!

Equation~67! follows from Eqs.~65! and ~66! at b→0.
We have obtained the density of linkage between pairs

nodes with fixed times of birth. From this characteristic~in
the continuous approximation!, we can find an average num
ber of connectionsD(k,k8) of parent nodes with degreek,
and child nodes with degreek8. In the continuous approxi-
mation,k.k8.

-

5-12
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We consider only the scaling region, and will not wri
coefficients in the following formulas of the present sectio
k5k(j). Then, for a scale-free network,P(k)5
2(]k/]j)21;k21/b21. Analogously,

D~k,k8!5B~j,j8!S ]k

]j D 21S ]k8

]j8
D 21

@j5k21/b,j85k821/b#

}k21/bk822. ~68!

One sees thatD(k,k8) is a decreasing function of bothk and
k8. Therefore, ifk ~the parent node! is fixed, the most prob-
able linking is with a child node with the smallest possib
k8, i.e., a node withk8;1.

If k8 ~the degree of a child node! is fixed, the most prob-
able linking is with a parent node with the smallest possi
k, i.e., a node withk5k8. This answer may be compare
with the corresponding exact result of Krapivsky and Red
@38#—the maximum probability that a node with degreek
~parent! and a node with degreek8 ~child! are connected
when k8 is fixed, occurs atk/k850.372. Therefore, we se
that the continuous approach is also good in this situatio

Equation~68! appears asymmetrical, and cannot be f
torized to the productP(k)P(k8). The reason for this is the
obvious absence of the symmetry relatively reversal
time—a quite natural asymmetry between parents and c
dren.

VIII. ACCELERATING GROWTH

Above we studied only linear network growth, i.e., th
total number of links of a network divided by the total num
ber of its nodes was constant during the evolution. This
only a particular case of network growth. The total numb
of links may be a nonlinear function of the total number
nodes. Keeping in mind the most intriguing application
communications networks, we now concentrate on accele
ing growth@36#, where this function grows more rapidly tha
a linear one. In particular, we will see that a power-law d
pendence of the input flow of links produces scale-free n
works.

A. Scaling relations

In the present section, we consider scale-free netwo
with an input flow of links that depends ont by a power law.
We will see that, in the limit of a large network size, su
nonlinear growth may produce the nonstationary distribut

P~q,t !}tzq2g, ~69!

and average in-degree~or degree!

q̄~s,t !}tdS s

t D
2b

. ~70!

Let us discuss the result of such a nonstationary behavio
One can easily repeat the derivation of Sec. III, and ob

the scaling form of the degree distribution of individu
nodes:
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p~q,s,t !5t2dS s

t D
b

f Fqt2dS s

t D
bG . ~71!

We again use the definition ofP(k,t) @Eq. ~7!# and Eq.~71!:

E
0

`

dxt2dxb f ~qt2dxb!}td/bq2121/b}tzq2g. ~72!

Hence we obtain a universal scaling relation for the ex
nentsz, d, andb,

z5d/b, ~73!

and the old relation@Eq. ~12!# for the exponentsg andb.
Let us derive this result once again, applying the contin

ous approach. Using Eqs.~11!, ~69!, and~70!, we obtain

tzq2g}2
1

t

]s

]t
@q5td1bs2b#}td/bq2121/b. ~74!

From Eq.~74!, relations~12! and ~73! follow immediately.
One can write Eq.~71! using only theg exponent:

p~q,s,t !5
s1/(g21)

t (11z)/(g21)
f S q

s1/(g21)

t (11z)/(g21)D . ~75!

Equation~75! is a direct generalization of Eq.~14!, obtained
for linearly growing networks.

B. Cutoff of degree distribution

Equation~69! is valid only in the limit of large network
size~long times!. Let us briefly discuss the finite-size effec
that arise.

Relation ~70! of Sec. VIII A, together with a rapid de
crease ofp(q,s,t) at largeq, produces a cutoff of the power
law distribution at the characteristic value

qcut;tb1d5tb(11z)5t (11z)/(g21). ~76!

Here we use the fact thatq̄(s,t) is largest for the oldest nod
and the scaling relations between the exponents@Eqs. ~12!
and ~73!#. The cutoff, qcut can be also obtained from th
estimationt*qcut

` dqtzq2g;1. It was shown that a trace o

the initial conditions atq;qcut may be visible in degree an
in-degree distributions measured for any network sizes@29#.
Such a cutoff~and a trace of the initial conditions! imposes
restrictions on the observation of power-law distribution
since there are few huge networks in Nature.

Let us obtain a general form ofP(q,t) for scale-free net-
works in a scaling regime. Using the known scaling form
p(q,s,t) @Eq. ~75!,# we can write

P~q,t !5
1

t E1

t

dsp~q,s,t !

;tzq2gE
qt2(11z)/(g21)

qt2z/(g21)

dwwg21f ~w!. ~77!
5-13
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Passing to the scaling limit,q→`, t→`, and fixed
qt2(11z)/(g21), we can replace the upper limit of the integr
in Eq. ~77! by infinity. Then we immediately obtain the sca
ing form

P~q,t !5tzq2gF~qt2(11z)b!5tzq2gF~qt2(11z)/(g21)!,
~78!

whereF(w) is a scaling function. In the case of a linear
growing network, the exponentz is zero, so P(q,t)
5q2gF(qt21/b)5q2gF(qt21/(g21)). This relation was ob-
tained for an exactly solvable model@29#.

C. Scaling exponents

Using relations obtained in Secs. VIII A and VIII B on
can obtain general results for a nonlinear, accelera
growth of networks. We start from the most general cons
erations. In scale-free networks, a wide range of the deg
distribution function is of a power-law form,P(q)}tzq2g. It
will be clear from the following that, to keep a network
the class of free-scale nets, the flow of new links has to b
power function of the number of nodes of the network, i.
be proportional tota. Here we introduce a new exponenta.

First let us assume that the exponent of the distributio
less than 2. The reasonable range is 1,g,2. To produce
the restricted average degree~that is, proportional tota), the
distribution must have a cutoff at largeq, qc
;t (11z)/(g21) ~see Sec. VIII B!. P(q)}tzq2g for ql;tx&q
&qc . The restriction from below is necessary to guaran
convergence of the integral,*0

`dqP(q,t)51. From this, we
immediately obtainx5z/(g21). ~Of course, this relation is
also valid forg.2.!

The average degreeq̄ is of the order ta11/t, then ta

;* t(11z)/(g21)
dqqtzq2g;t211(11z)/(g21) ~the value of the

integral is determined by its upper limit!. Therefore, (1
1z)/(g21)5a11, so the cutoff of the distribution is of th
order of the total number of links in the network. This is t
maximal number of the problem; hence the cutoff is abse
The expression for theg exponent,g511(11z)/(11a),
follows from the last relation.

Note thata is an ‘‘external’’ exponent which governs th
growth process. Hence we have demonstrated that it is
ficient to knowa and only one exponent ofg, b, z, d, or x
for finding all the others.

Also note that we have to setz,a to keep the exponentg
below 2, as assumed. Also, one sees that the lower boun
for g, 111/(11a), is approached for the stationary di
tribution z50. In this case, the form of the distribution
completely fixed by the accelerating growth, the exponeng
depends only ona.

The other possibility isg.2. In this case, the integral fo
the average degree is determined by its lower limitta

;* tz/(g21)dqqtzq2g;tz2z(g22)/(g21). Henceg511z/a and
z.a. ~Of course, this relation is not valid fora50.! Thus
we have described the possible forms of the degree distr
tion.

Let us demonstrate how these distributions may arise
nonlinearly growing networks with preferential linking. W
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introduce the simplest generalizations of the model of S
IV B to the case of an increasing input flow of links,c0ta and
a.0.

First let us consider the case of constant additional att
tiveness,A5const. The equation forq̄(s,t) is

]q̄~s,t !

]t
5c0ta

q̄~s,t !1A

E
0

t

du@ q̄~u,t !1A#

, ~79!

where q̄(0,0)50, q̄(t,t)5n. One may check tha
*0

t duq̄(u,t)5nt1c0ta11/(a11). Inserting this relation into
Eq. ~79!, and solving the resulting equation, one obtains

q̄~s,t !1A

n1A
5F 11~n1A!~11a!t2a/c0

11~n1A!~11a!s2a/c0
G 111/aS s

t D
2(a11)

.

~80!

In the interval@(n1A)(11a)/c0#1/a!s!t,

q̄~s,t !5~n1A!S s

t D
2(a11)

. ~81!

Thus the exponentb, q̄(s,t)}s2b is equal to 11a, and is
larger than 1. The dependenceq̄(s) becomes constant,

q̄~s,t !5~n1A!21/aS c0

11aD 111/a

ta11, ~82!

at s!@(n1A)(11a)/c0#1/a. One may compare the resu
@Eq. ~82!# with the total number of links in the network
N(t)'c0ta11/(11a).

From Eq.~82!, we see immediately that the exponentb
511a, so g5111/a and d5z50. One may calculate
the degree distribution using Eq.~11!. The resulting distri-
bution, in the region 1!q/(n1A)!$c0 /@(n1A)(1
1a)#%111/at11a, is of the form

P~q,t !5
~n1A!1/(11a)

11a
q2[111/(11a)] . ~83!

Thus we obtain the stationary degree distribution with ag
exponent less than 2 that belongs to one of the types
scribed above.

To demonstrate the other possibility,g.2, below we
consider the model with a different rule of the distribution
new links. Let the additional attractiveness be time dep
dent, and new links be distributed between nodes with pr
ability proportional toq1Bc0ta/(11a), whereB is positive
constant.c0ta/(11a) is the average degree of the network
time t.

Repeating the previous calculations, one obtains
equation

]q̄~s,t !

]t
5c0ta

q̄~s,t !1Bc0ta/~11a!

nt1Bc0ta11/~11a!1c0ta11/~a11!
,

~84!
5-14
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whereq̄(0.0)50, andq̄(t,t)5n. At long times, one obtains

]q̄~s,t !

]t
5

11a

11B

q̄~s,t !1Bc0ta/~11a!

t
. ~85!

The solution of Eq.~85! is

q̄~s,t !5Fn1
Bc0sa

12BaG S s

t D
2(11a)/(11B)

2
Bc0ta

12Ba
. ~86!

If B50, we obtain the previous result,b511a. For sa

@n(12Ba)/(Bc0),

q̄~s,t !'
Bc0ta

12Ba H S s

t D
a2(11a)/(11B)

21J . ~87!

Therefore, the scaling exponents of the growing network
b5(11a)/(11B)2a5(12Ba)/(11B), g5111/b51
1@(11a)/(11B)2a#21521B(11a)/(12Ba), d5a,
and z5a(11B)/(12Ba). The degree distribution differs
sharply from the distribution obtained for the previo
model. It is nonstationary, and is of the formP(q,t)
;ta(11B)/(12Ba)q2[11(11B)/(12Ba)] for q@ta. In this case,
b,1 andg.2 for any positivea andB. The scaling regime
is realized ifBa,1. Note that, in both cases considered, o
cannot seta50 directly in the obtained expression for th
scaling exponents.

IX. DEVELOPING AND DECAYING NETWORKS

Now we can study the evolution of the network acco
panied by a reconstruction of its old part@35#. This, e.g., may
include a permanent deletion of old links or nodes. Note t
the processes of addition and deletion of links may be c
sidered in a unified way, so we study them together.

A. Developing networks

Let us introduce two channels for the appearance of n
links. The first one was studied in Sec. IV B. We consid
undirected links, so, in our old formulas, we have to sub
tute q̄(s,t)5 k̄(s,t)2m and putk̄(t,t)5m. n50. Instead of
the additional attractivenessA, here we use the constantAn
5A2m.2m. The second channel is the following. Ea
time a new node is added,c additional links arise betwee
old unconnected nodesi and j, with a probability propor-
tional to the product (ki1Ao)(kj1Ao), Ao.2m. Note
thatAn andAo may be not equal; this here we have a mixtu
of different preferences as in Sec. IV C. Then the equa
for k̄(s,t) is of the form

] k̄~s,t !

]t
5m

k̄~s,t !1An

E
0

t

du@ k̄~u,t !1An#

12c
k̄~s,t !1Ao

E
0

t

du@ k̄~u,t !1Ao#

~88!

~see Ref.@35#!. *0
t dsk̄(s,t)52(m1c)t, so we obtain imme-

diately the scaling exponentb,
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b5
m

2m12c1An
1

2c

2m12c1Ao
, ~89!

and, using Eq.~12!, the exponentg. We do not consider
these relations in detail.

B. Decaying networks

One can consider the possibility of deletion of links.
this case, the second channel is the following. At each inc
ment of time,2c random links are removed from the ne
work. Note that we keep the same definition ofc as in Sec.
IX A, in order to use similar relations.

Previously, a process of instant random damage was c
sidered@16,25–28#. Such a type of damage cannot chan
the value ofg either for random removal links or for remova
nodes. Here we consider quite a different situation,perma-
nent random damage, in which components of a network ar
removed permanently during its growth. In this case,
difference between random removal of nodes and links
striking.

We have shown that Eqs.~88! and ~89! also describe the
case of decaying networks with a permanent deletion
links, if one takesc to be negative in them and assumes th
Ao50 @35#. Therefore, Eq.~89!, and the corresponding rela
tion for g, provide the exponents in this situation. The
results have been checked by simulation in the particu
case ofAn50, i.e.,g(c50)53 @35#.

Here we present the corresponding relations for in-deg
exponents network with a permanent deletion of direc
links. As a base, we use the model with a preferential atta
ment of links, introduced in Sec. IV B but, withn50. One
can easily check that

b5
1

11c/m1An /m
1

c/m

11c/m
5

11g0c/m1~c/m!2

~11c/m!~g0211c/m!
~90!

and

g521
g022

11g0c/m1~c/m!2
, ~91!

where g0[g(c50)521An /m. The resulting phase dia
gram 2c/m vs g0 is shown in Fig. 9. One sees that th
random removal of links increases theg exponent, which
grows monotonically with increasing2c/m until it becomes
infinite on the lineg05(2c/m)11/(2c/m). In the dashed
region of Fig. 9, the network is out of the class of scale-fr
nets. Note that, for large enough2c/m, the network may
decay to a set of uncoupled clusters.

Let us now consider an additional permanent deletion
random nodes.Ab initio, one may expect that this factor doe
not changeg. Nevertheless, as we shall see, this case is
special interest.

At each increment of time, one new node is added, an
randomly chosen node is deleted with probabilityc<1. We
use the preferential linking introduced in Sec. IV B, althou
5-15



al
n-

o

p-

th

d

the

om
ly
id-

ling
tain

a-
of

can
ap-

on-
are
ned

the

s

ith-

e

tio

f
s.

k

S. N. DOROGOVTSEV AND J. F. F. MENDES PHYSICAL REVIEW E63 056125
a more general model may be also considered. It is natur
consider in-degree,q(s,t), here, since results are more ge
eral in this case.

Let us introduce the probability that a nodess is present,
N(s,t). In the continuous approach this has the meaning
the ‘‘density’’ of surviving nodes at timet, N̄(s,t). One may
introduce the ‘‘density of in-degree.’’ In the continuous a
proach, this looks like

d̄~s,t ![N̄~s,t !q̄~s,t !. ~92!

Our main equation forN̄(s,t) is of the form

]N̄~s,t !

]t
52c

N̄~s,t !

E
0

t

duN̄~u,t !

, ~93!

whereN̄(0,0)50 andN̄(t,t)51. From Eq.~93! one imme-
diately obtains the obvious relation*0

t duN̄(u,t)5(12c)t.
The solution of Eq.~93! is

N̄~s,t !5S s

t D
c/(12c)

. ~94!

In the present case, the equation for the in-degree is

]q̄~s,t !

]t
5m

q̄~s,t !1A

E
0

t

duN̄~u,t !@ q̄~s,t !1A#

, ~95!

where the integral on the right side is equal to the sum of
total in-degree of the network at timet and the product of the
additional attractiveness and the number of survived no
@compare with Eq.~19! for c50#. Here q̄(0,0)50 and
q̄(t,t)5n, so d̄(0,0)50 andd̄(t,t)5n.

FIG. 9. Phase diagram of a network growing under the condi
of permanent random damage—permanent deleting of random
rected links. At each time step,m new links are added and2c
random links are deleted~see the text!. g0 is the scaling exponent o
the corresponding network growing without deletion of link
Curves in the plot are lines of constant values ofg. g5` on the
line, andg052(c/m)21/(c/m). In the dashed region, the networ
is out of the class of scale-free nets.
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Multiplying Eq. ~95! by N̄(s,t), and applying*0
t ds to

both sides of the resulting equation, we obtain*0
t dsd̄(s,t)

5(m1n)(12c)t. Substituting this relation into Eq.~95!, we
immediately obtainq̄(s,t)}(s/t)2b, where the exponent is

b5
m

~12c!~m1n1A!
5

b0

12c
. ~96!

Hereb0[b(c50), g0[g(c50). Using Eq.~94!, we ob-
tain for the density of in-degree,d̄(s,t)}(s/t)2(b1c)/(12c).
Note thatd̄(s→0,t)→` for c,b0 and d̄(s→0,t)→0 for c
.b0.

The expression for the degree distribution looks like

P~k,t !5

E
0

t

dsN~s,t !p~q,s,t !

E
0

t

dsN~s,t !

5

E
0

t

dsN̄~s,t !d~q2q̄~s,t !!

E
0

t

dsN̄~s,t !

.

~97!

Therefore, repeating the derivation of Sec. III, we obtain
distribution P(k)}k2(1/b)[c/(12c)]k2121/b}k2121/[b(12c)] ,
sog5111/@b(12c)#5111/b05g0. Thus the distribution
is of the same form as that without a permanent rand
deleting of nodes. Note that this situation differs sharp
from the case of permanent random deletion of links cons
ered above.

Here we find a violation of the scaling relation@Eq. ~12!#.
The reason for this is an effective renormalization of thes
variable due to the removal of nodes. Repeating the sca
considerations of previous sections, for this case we ob
the following forms:p(q,s,t)5(s/t)b f @q(s/t)b# and P(q)
5q2$111/[b(12c)] %F(q/tb).

We conclude this section with the statement that perm
nently deleting a part of the nodes with the largest values
degree~that is, in analogy to an intentional attack@25,28#!,
one destroys the scaling behavior of the network. One
easily check this statement by using the continuous
proach.

X. APPLICABILITY OF THE CONTINUOUS APPROACH

In the present section, we discuss the quality of the c
tinuous approach employed here. For this, we comp
known exact results with the corresponding results obtai
in the framework of the continuous approximation.

A. Linear preference

In Sec. II, we have already written out the answer to
continuous approach for the Baraba´si-Albert model withm
51. For a more general case, whenm is any positive integer
number, andk5q1m, in the framework of the continuou
approach one obtainsP(q)52m2/(q1m)3 @19#. One may
compare this expression with the exact result obtained w
out passing to a continuous limit:P(q)52m(m11)/@(q
1m)(q1m11)(q1m12)# @18#. The exponents are th
same but the factors are different.

n
di-
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One may ask why this approach is so good. The reaso
the rapid decrease ofp(q,s,t) at largeq. Because of this, the
results of the continuous approximation obtained with
d-function ansatz@Eq. ~5!# are reasonable. Indeed, in th
limit of large s and t, and for fixeds/t, we obtained the
scaling, exponentially decreasing, expressionp(q,s,t)
5@q(s/t)b#A21 exp@2q(s/t)b#/G(A) @18#. Here G( ) is the
gamma function. This relation is valid for the model of Se
IV B, with n50.

B. Nonlinear preference

The continuous approach may be applied to nonlin
preference. In this case, calculations similar to the one
Sec. V may be made.

We consider the simplest case, generalizing the Barab´si-
Albert modelk̄(t,t)51,m51. Then the main equations ar

] k̄~s,t !

]t
5

f p@ k̄~s,t !#

E
0

t

du fp@ k̄~u,t !#

⇒E
0

t

dsk̄~s,t !52t. ~98!

Here f p(k) is a preference function. Let us search for t
solution of Eq.~98! in the scaling formk̄(s,t)5k(s/t). Then

2
]k~j!

] ln j
5

f p@k~j!#

E
0

1

dz f p@k~z!#

, k~1!51, E
0

1

dzk~z!52.

~99!

We start from a specific type of nonlinear preference t
produces scale-free networks. Let the probability for a dis
bution of new links be proportional to the preference fun
tion f p(k), that is asymptotically linear for largek, f p(k
→`)→ck, wherec is a constant~see Refs.@17,38#!.

The integral*0
1dz f p@k(z)# is a constant of the problem

In the scaling region of largek̄(s,t) andk, the equation takes
the form

2d ln k~j!/d ln j5cH E
0

1

dz f p@k~z!#J 21

5b. ~100!

Equation~100! demonstrates that scaling is present, and
network is scale free in this case.

Therefore, to find the scaling exponentb, we have to
solve the equation

2
]k~j!

] ln j
5

b

c
f p@k~j!#. ~101!

After inserting its solutionk(j)5F21@F(1)1(b/c)ln j#
(F(k)[*dk f (k), whereF21 is an inverse function, into

b215c21E
0

1

dz f p@k~z!#

or, equivalently,
05612
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25E
0

1

dzk~z!, ~102!

we find the solutionb of any of these transcendent
equations.

We will not consider examples of applications of the
relations, but will briefly describe the case of a power-la
preference function just to test the continuous approach
ing the known non-scale-free network. Indeed, we have
ready checked the quality of the continuous approach
scale-free networks. Now it is natural to test it for oth
networks.

Let the preference function bef p(k)5k2y. If one sets

E
0

1

dzky~z!5m5const, ~103!

then the equation fork(j) is

2
d ln k~j!

d ln j
5m21 exp@2~12y!ln k#. ~104!

Its solution is

k~j!5S 12
12y

m
ln j D 1/(12y)

. ~105!

The constantm can be obtained from the transcenden
equations

25E
0

1

djS 12
12y

m
ln j D 1/(12y)

, ~106!

or, equivalently,

m5E
0

1

djS 12
12y

m
ln j D y/(12y)

. ~107!

The final transcendental equation may be written in
form

2S m

12yD 1/(12y)

e2m/(12y)5GS 11
1

12y
,

m

12yD ,

~108!

which givesm(y). HereG() is the incomplete gamma func
tion. Near y51, m>2y, and neary50, m>110.5963y,
where 0.59635e Ei(21), Ei() is the exponential integral

Inserting Eq.~105! into the expression forP(k) in the
continuous approach@Eq. ~11!# we obtain the degree distri
bution:

P~k!5mem/(12y)k2y expF2
m

12y
k12yG , ~109!

These results are close to the corresponding exact o
@17,38#. The values of the powers are the same, although
coefficientsm differ slightly. That is, in Refs.@17,38#, near
y51, m>222.407(12y); neary50, m>110.5078y.
5-17
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C. Random attachment of links

Finally, in the framework of the continuous approach,
us consider the model discussed in Sec. IV A, produc
non-scale-free, exponential degree distributions~see Refs.
@5,19#!. This network is a particular case of the network co
sidered in Sec. IV C, wheren50, m50, nr51, andA50.
The solution of Eq.~27! in this case is

k̄~s,t !512 ln~s/t ! ~110!

@we used the boundary conditionk̄(t,t)51#. Then, using Eq.
~11!, one obtains the degree distribution

P~k!52
1

t

]@ t exp~12k!#

]k
5exp~12k! ~111!

~also see Refs.@5,19#!. This can be compared with the exa
form of Sec. IV A: P(k)5exp(2k ln 2).

Therefore, the continuous approach easily produces
sonable answers even for non-scale-free networks. The
son for this is again the rapid decrease ofp(k,s,t) at largek
for these networks, see Eq.~18! of Sec. IV A.

XI. CONCLUSIONS

We have analyzed scale-invariant properties of scale-
networks whose growth is governed by a mechanism of p
erential attachment of links. Degree distributions of such n
works are of a simple scaling form. We have shown that
scaling exponents that arise are coupled by universal sca
relations. Nevertheless, we present an important partic
case in which these simple relations are violated.

One of the questions discussed was about types of pre
ential attachment of links producing scale-free networ
One can see that scale-free networks are produced by a
variety of linkings. In particular, it is enough to add an a
mixture of linear preference linking to a random attachm
of links to obtain a scale-free network. The interplay of d
ferent factors, such as the deletion of links of a netwo
during its growth, may dramatically change its degree dis
bution, and even remove it from the class of scale-free n
works. Hence we have shown how one can change the c
cal exponents of a network.

At all times, we used a very simple continuous approa
Why is this so good? The scaling behavior of networks ari
from a power-law singularity of degree ats50; i.e., for the
oldest nodes,k̄(s,t)}s2b. Thus, ‘‘the oldest are the rich
est,’’ and such a behavior is often perceived as a defect
preferential linking scheme@39#. If one removes such a sin
,
h
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gularity or makes it weaker, the growing network will be o
of the class of scale-free nets. It is the separation of po
and exponential dependences inP(q,t) and p(q,s,t) that
makes the continuous approximation so efficient. Therefo
we see that scale-free networks are quite suitable for
continuous approach.

Natural boundariess50 ands5t are always present in
growing network. We showed that, even the presence
strong nodes did not lead to a violation of the rule ‘‘th
oldest are the richest’’ for nodes in the continuous part
degree distribution. Nevertheless, we have found a thres
value of the strength of this node, above which a single n
influences the evolution of an entire network. This capture
finite fraction of all links—condensation of links—and dete
mines values of exponents, although the network rema
scale free. These ‘‘collective’’ effects are explained by t
absence of any ‘‘interaction distance’’ in the process of n
work growth. Each node has some chance to obtain a
link. Therefore, in principle, it is possible to adjust param
eters to direct all new links to a single node.

One should note that the main part of our paper has b
devoted to the study of the one-node characteristic of
network—degree distribution. The same simple characte
tic is a matter of interest to most modern experimental a
theoretical studies. This restriction lets us apply typica
rather general models, in which links appeared between
bitrary nodes, e.g., new and old or old and old. If we do n
study the statistics of connections between different no
and global connectivity properties of the network, the co
sidered problems are usually equivalent to a classical p
lem of distribution of new particles among an increasi
number of boxes. In fact, in the present paper, we studied
question of how a network is self-organized into a scale-f
structure using some versions of stochastic multiplicat
processes@22# which are most known by their ‘‘econophys
cal’’ applications. Most of our results may be described bo
in terms of the theory of evolving networks an
econophysics—wealth distribution processes.

Nevertheless, a part of our paper~see Sec. VII! has been
devoted to problems that cannot be understood using a
node characteristic. The main goal of statistical physics
growing networks—a description of the topology of evolvin
networks—is located just in this direction.
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